ON WEAKLY 2-ABSORBING IDEALS OF COMMUTATIVE RINGS

AYMAN BADAWI AND AHMAD YOUSEFIAN DARANI

Communicated by Manfred Dugas

Abstract. Let R be a commutative ring with identity $1 \neq 0$. Various generalizations of prime ideals have been studied. For example, a proper ideal I of R is weakly prime if $a, b \in R$ with $0 \neq ab \in I$, then either $a \in I$ or $b \in I$. Also a proper ideal I of R is said to be 2-absorbing if whenever $a,b,c\in R$ and $abc\in I$, then either $ab\in I$ or $ac\in I$ or $bc\in I$. In this paper, we introduce the concept of a weakly 2-absorbing ideal. A proper ideal I of R is called a weakly 2-absorbing ideal of R if whenever $a,b,c\in R$ and $0 \neq abc \in I$, then either $ab \in I$ or $ac \in I$ or $bc \in I$. For example, every proper ideal of a quasi-local ring (R, M) with $M^3 = \{0\}$ is a weakly 2-absorbing ideal of R. We show that a weakly 2-absorbing ideal I of R with $I^3 \neq 0$ is a 2-absorbing ideal of R. We show that every proper ideal of a commutative ring R is a weakly 2-absorbing ideal if and only if either R is a quasi-local ring with maximal ideal M such that $M^3 = \{0\}$ or R is ringisomorphic to $R_1 \times F$ where R_1 is a quasi-local ring with maximal ideal Msuch that $M^2 = \{0\}$ and F is a field or R is ring-isomorphic to $F_1 \times F_2 \times F_3$ for some fields F_1, F_2, F_3 .

1. Introduction

In this paper, we study weakly 2-absorbing ideals in commutative rings with identity, which are a generalization of weakly prime ideals. Recall that 2-absorbing ideals, which are a generalization of prime ideals, were introduced and investigated in [4] and most recently in [3]. Recall from [2] that a proper ideal I of a commutative ring R is said to be a weakly prime ideal of R if whenever $a, b \in R$ and $0 \neq ab \in I$, then either $a \in I$ or $b \in I$. Also recall from [4] that a proper ideal I

 $^{1991\} Mathematics\ Subject\ Classification.\ Primary\ 13A05,\ 13F05.$

Key words and phrases. Prime ideal, 2-absorbing ideal, weakly 2-absorbing ideal, weakly prime ideal, almost prime ideal, ϕ -prime ideal.

of a commutative ring R is called a 2-absorbing ideal of R if whenever $a,b,c\in R$ and $abc\in I$, then either $ab\in I$ or $ac\in I$ or $bc\in I$. We define a proper ideal of a commutative ring R to be a weakly 2-absorbing ideal of R if whenever $a,b,c\in R$ and $0\neq abc\in I$, then either $ab\in I$ or $ac\in I$ or $bc\in I$. In the second section of this paper, many basic properties of weakly 2-absorbing ideals are studied, and in the third section, we characterize all commutative rings with the property that all proper ideals are weakly 2-absorbing ideals.

We assume throughout that all rings are commutative with $1 \neq 0$. Let R be a ring. Then Nil(R) denotes the ideal of nilpotent elements of R. An ideal I of R is said to be a proper ideal of R if $I \neq R$. As usual, \mathbb{Z} , and \mathbb{Z}_n will denote integers, and integers modulo n, respectively. Some of our examples use the R(+)M construction as in [5]. Let R be a ring and M an R-module. Then $R(+)M = R \times M$ is a ring with identity (1,0) under addition defined by (r,m) + (s,n) = (r+s,m+n) and multiplication defined by (r,m)(s,n) = (rs,rn+sm). Note that $(0(+)M)^2 = 0$; so $0(+)M \subseteq Nil(R(+)M)$.

2. Basic properties of weakly 2-absorbing ideals

It is clear that every 2-absorbing ideal of a ring R is a weakly 2-absorbing ideal of R. If R is any commutative ring, then $I = \{0\}$ is a weakly 2-absorbing ideal of R by definition. If $I = \{0\}$, then I is a 2-absorbing ideal of \mathbb{Z}_4 , but I is a weakly 2-absorbing ideal of \mathbb{Z}_8 . The following is an example of a nonzero weakly 2-absorbing ideal that is not a 2-absorbing ideal (also see Theorem 2.9 and Theorem 2.13).

Example 2.1. Let $M = \{0,4\}$. Then M is an ideal of \mathbb{Z}_8 . Let $R = \mathbb{Z}_8(+)M$ and let $I = \{(0,0),(0,4)\}$. Since $abc \in I$ for some $a,b,c \in R \setminus I$ if and only if abc = (0,0), we conclude that I is a weakly 2-absorbing ideal of R. Since $(2,0)(2,0)(2,0) \in I$ and $(4,0) \notin I$, I is not a 2-absorbing ideal of R. For an infinite weakly 2-absorbing ideal that is not a 2-absorbing ideal, let M be as above and K = M[X]. Then K is an infinite ideal of $\mathbb{Z}_8[X]$. Let $R = \mathbb{Z}_8(+)K$ and let $I = \{0\}(+)K$. Then I is an infinite ideal of R. Again, since $abc \in I$ for some $a,b,c \in R \setminus I$ if and only if abc = (0,0), I is a weakly 2-absorbing ideal of R.

We start with the following trivial lemma that we omit its proof.

Lemma 2.2. If P_1 and P_2 are two distinct weakly prime ideals of a commutative ring R, then $P_1 \cap P_2$ is a weakly 2-absorbing ideal of R.

Let I be a weakly 2-absorbing ideal of a ring R and $a,b,c \in R$. We say (a,b,c) is a triple-zero of I if abc = 0, $ab \notin I$, $bc \notin I$, and $ac \notin I$.

Theorem 2.3. Let I be a weakly 2-absorbing ideal of a ring R and suppose that that (a, b, c) is a triple-zero of I for some $a, b, c \in R$. Then

- (1) $abI = bcI = acI = \{0\}.$
- (2) $aI^2 = bI^2 = cI^2 = \{0\}.$
- PROOF. (1). Suppose that $abi \neq 0$ for some $i \in I$. Then $ab(c+i) \neq 0$. Since $ab \notin I$, we conclude that either $a(c+i) \in I$ or $b(c+i) \in I$, and hence $ac \in I$ or $bc \in I$, a contradiction. Thus $abI = \{0\}$. Similarly, one can show that $bcI = acI = \{0\}$.
- (2). Suppose that $ai_1i_2 \neq 0$ for some $i_1, i_2 \in I$. Since $abI = acI = bcI = \{0\}$ by (1), we conclude that $a(b+i_1)(c+i_2) = ai_1i_2 \neq 0$. Hence either $a(b+i_1) \in I$ or $a(c+i_2) \in I$ or $(b+i_1)(c+i_2) \in I$, and thus either $ab \in I$ or $ac \in I$ or $bc \in I$, a contradiction. Thus $aI^2 = \{0\}$. Similarly, $bI^2 = cI^2 = \{0\}$.

Theorem 2.4. Let I be a weakly 2-absorbing ideal of R that is not a 2-absorbing ideal. Then $I^3 = \{0\}$.

PROOF. Since I is not a 2-absorbing ideal of R, I has a triple-zero (a,b,c) for some $a,b,c \in R$. Suppose that $i_1i_2i_3 \neq 0$ for some $i_1,i_2,i_3 \in I$. Then by Theorem 2.3 we have $(a+i_1)(b+i_2)(c+i_3)=i_1i_2i_3\neq 0$. Hence either $(a+i_1)(b+i_2)\in I$ or $(a+i_1)(c+i_3)\in I$ or $(b+i_2)(c+i_3)\in I$, and thus either $ab\in I$ or $ac\in I$ or $bc\in I$, a contradiction. Hence $I^3=\{0\}$.

Corollary 2.5. Let I be a weakly 2absorbing ideal of R. If I is not a 2-absorbing ideal of R, then $I \subseteq Nil(R)$.

It should be noted that a proper ideal I of R with $I^3 = 0$ need not be a weakly 2-absorbing ideal of R. We have the following example.

Example 2.6. $R = \mathbb{Z}_{16}$. Then $I = \{0, 8\}$ is an ideal of \mathbb{Z}_{16} and $I^3 = 0$, but $2.2.2 = 8 \in I$ and $4 \notin I$.

Theorem 2.7. Let I be a weakly 2-absorbing ideal of R that is not a 2-absorbing ideal. Then

- (1) If $w \in Nil(R)$, then either $w^2 \in I$ or $w^2I = wI^2 = \{0\}$.
- (2) $Nil(R)^2I^2 = \{0\}.$

PROOF. (1). Let $w \in Nil(R)$. First, we show that if $w^2I \neq \{0\}$, then $w^2 \in I$. Hence assume that $w^2I \neq \{0\}$. Let n be the least positive integer such that $w^n = 0$. Then $n \geq 3$ and for some $i \in I$ we have $w^2(i + w^{n-2}) = w^2i \neq 0$. Hence either $w^2 \in I$ or $(wi + w^{n-1}) \in I$. If $w^2 \in I$, then we are done. Thus assume $(wi+w^{n-1}) \in I$. Hence $w^{n-1} \in I$ and $w^{n-1} \neq 0$, and thus $w^2 \in I$. Hence for each

 $w \in Nil(R)$, we have either $w^2 \in I$ or $w^2I = \{0\}$. Now assume that $v^2 \notin I$ for some $v \in Nil(R)$. Then $v^2I = \{0\}$. We will show that $vI^2 = \{0\}$. Assume that $vi_1i_2 \neq 0$ for some $i_1, i_2 \in I$. Let m be the least positive integer such that $v^m = 0$. Since $v^2 \notin I$, $m \geq 3$ and $v^2I = 0$. Hence $v(v + i_1)(v^{m-2} + i_2) = vi_1i_2 \neq 0$. Since $0 \neq v(v+i_1)(v^{m-2}+i_2) \in I$, one can conclude that either $v^2 \in I$ or $v^{m-1} \neq 0$ and $v^{m-1} \in I$. Hence in both cases, we have $v^2 \in I$, a contradiction. Thus $vI^2 = \{0\}$.

(2). Let $a, b \in Nil(R)$. If either $a^2 \notin I$ or $b^2 \notin I$, then $abI^2 = \{0\}$ by (1). Hence suppose that $a^2 \in I$ and $b^2 \in I$. Then $ab(a+b) \in I$. If (a,b,a+b) is a triple-zero of I, then $abI = \{0\}$ by Theorem 2.3(1), and hence $abI^2 = \{0\}$. if (a,b,a+b) is not a triple-zero of I, then one can easily see that $ab \in I$, and hence $abI^2 = \{0\}$ by Theorem 2.4.

Corollary 2.8. Suppose that A, B, C are weakly 2-absorbing ideals of a ring R such that none of them is a 2-absorbing ideal of R. Then $A^2BC = AB^2C = ABC^2 = A^2C^2 = A^2C^2 = B^2C^2 = \{0\}$

If I is a 2-absorbing ideal of a ring R, then there are at most two prime ideals of R that are minimal over I (see [4, Theorem 2.3] and [3, Theorem 2.5]). In the following result, we show that for every $n \geq 2$, there is a ring R and a nonzero weakly 2-absorbing ideal I of R such that there are exactly n prime ideals of R that are minimal over I.

Theorem 2.9. Let $n \geq 2$. Then there is a ring R and a nonzero weakly 2-absorbing I ideal of R such that there are exactly n prime ideals of R that are minimal over I.

PROOF. Let $n \geq 2$ and $D = \mathbb{Z}_8 \times \cdots \times \mathbb{Z}_8$ (n times). Let $M = \{0,4\}$ an ideal of \mathbb{Z}_8 . For every $x = (a_1, \ldots, a_n) \in D$, define $xM = a_1M$. Then M is a D-module. Now consider the idealization ring R = D(+)M and $I = \{(0, \ldots, 0)\}(+)M$. We note that if $a, b, c \in R \setminus I$ and $abc \in I$, then $abc = ((0, \ldots, 0), 0)$. Hence I is a nonzero weakly 2-absorbing ideal of R. Since every prime ideal of R is of the form P(+)M for some prime ideal P of D by [5, Theorem 25.1 (3)], we conclude that there are exactly n prime ideals of R that are minimal over I.

Theorem 2.10. Let $R = R_1 \times R_2$ be a decomposable commutative ring and I be a proper ideal of R_1 . The following statements are equivalent:

- (1) $I \times R_2$ is a weakly 2-absorbing ideal of R.
- (2) $I \times R_2$ is a 2-absorbing ideal of R.
- (3) I is a 2-absorbing ideal of R_1 .

PROOF. (1) \Rightarrow (2). Since $I \times R_2 \nsubseteq Nil(R)$, $I \times R_2$ must be a 2-absorbing ideal of R by Corollary 2.5. (2) \Rightarrow (3). The claim is clear. (3) \Rightarrow (1). If I is a 2-absorbing ideal of R_1 , then it is easily verified that $I \times R_2$ is a 2-absorbing ideal of R, and thus $I \times R_2$ is a weakly 2-absorbing ideal of R.

Theorem 2.11. Let $R = R_1 \times R_2$ where R_1 and R_2 are commutative rings with identity. Let I_1 be a nonzero proper ideal of R_1 and J be a nonzero ideal of R_2 . The following statements are equivalent:

- (1) $I \times J$ is a weakly 2-absorbing ideal of R.
- (2) $J = R_2$ and I is a 2-absorbing ideal of R_1 or J is a prime ideal of R_2 and I is a prime ideal of R_1 .
- (3) $I \times J$ is a 2-absorbing ideal of R.

PROOF. (1) \Rightarrow (2). Suppose that $I \times J$ is a weakly 2-absorbing ideal of R. If $J=R_2$, then I is a 2-absorbing ideal ideal of R_1 by Theorem 2.10. Suppose that $J \neq R_2$. We show that J is a prime ideal of R_2 and I is a prime ideal of R_1 . Let $a,b \in R_2$ such that $ab \in J$, and let $0 \neq i \in I$. Then (i,1)(1,a)(1,b) = I $(i,ab) \in I \times J \setminus \{(0,0)\}$. Since $(1,a)(1,b) = (1,ab) \notin I_1 \times J$, we conclude that either $(i,1)(1,a)=(i,a)\in I\times J$ or $(i,1)(1,b)=(i,b)\in I\times J$, and hence either $a \in J$ or $b \in J$. Thus J is a prime ideal of R_2 . Similarly, let $c, d \in R_1$ such that $cd \in I$, and let $0 \neq j \in J$. Then $(c,1)(d,1)(1,j) = (cd,j) \in I \times J \setminus \{(0,0)\}$. Since $(c,1)(d,1)=(cd,1)\notin I\times J$, we conclude that either $(c,1)(1,j)=(c,j)\in I\times J$ or $(d,1)(1,j)=(d,j)\in I\times J$, and thus either $c\in I$ or $d\in I$. Hence I is a prime ideal of R_1 . (2) \Rightarrow (3). If $J = R_2$ and I is a 2-absorbing ideal of R_1 , then $I \times R_2$ is a 2-absorbing ideal of R by Theorem 2.10. Suppose that I is a prime ideal of R_1 and J is a prime ideal of R_2 . Suppose that $(a_1,b_1)(a_2,b_2)(a_3,b_3) \in I \times J$ for some $a_1, a_2, a_3 \in R_1$ and for some $b_1, b_2, b_3 \in R_2$. Then at least one of the a_i 's is in I, say a_1 , and at least one of the $b_i's$ is in J, say b_2 . Thus $(a_1, b_1)(a_2, b_2) \in I \times J$. Hence $I \times J$ is a 2-absorbing ideal of R. (3) \Rightarrow (1). No comments.

The following example shows that the hypothesis that J is a nonzero ideal of R_2 in Theorem 2.11 is crucial.

Example 2.12. Let $R_1 = \mathbb{Z}_8(+)M$ and $I = \{0\}(+)M$ as in example 2.1. Let R_2 be a field. Then $I \times \{0\}$ is a weakly 2-absorbing ideal of $R_1 \times R_2$ that is not a 2-absorbing ideal of $R_1 \times R_2$. Observe that I is not a prime ideal of R_1 .

Theorem 2.13. Let $R = R_1 \times R_2$ be a commutative ring. Let I be a nonzero proper ideal of R_1 and J be an ideal of R_2 . The following statements are equivalent:

- (1) $I \times J$ is a weakly 2-absorbing ideal of R that is not a 2-absorbing ideal.
- (2) I is a weakly prime ideal of R_1 that is not a prime ideal and $J = \{0\}$ is a prime ideal of R_2 .

PROOF. (1) \Rightarrow (2). Assume that $I \times J$ is a weakly 2-absorbing ideal of R that is not a 2-absorbing ideal. Suppose that $J \neq \{0\}$. Then $I \times J$ is a 2-absorbing ideal of R by Theorem 2.11, which contradicts the hypothesis. Thus $J = \{0\}$. We show that $J = \{0\}$ is a prime ideal of R_2 (and hence R_2 is an integral domain). Suppose that $ab \in J = \{0\}$ for some $a, b \in R_2$. Let $0 \neq i \in I$. Since $(i,1)(1,a)(1,b) = (i,ab) \in I \times J \setminus \{(0,0)\} \text{ and } (1,a)(1,b) = (1,ab) \notin I \times J, \text{ we}$ conclude that either $(i,1)(1,a)=(i,a)\in I\times J$ or $(i,1)(1,b)=(i,b)\in I\times J$, and thus $a \in J$ or $b \in J$. Hence $J = \{0\}$ is a prime ideal of R_2 . We show that I is a weakly prime ideal of R_1 . Suppose that $ab \in I \setminus \{0\}$ for some $a, b \in R_1$. Since $(a,1)(b,1)(1,0) = (ab,0) \in I \times \{0\} \setminus \{(0,0)\} \text{ and } (a,1)(b,1) = (ab,1) \notin I \times \{0\}, \text{ we}$ conclude that either $(a, 1)(1, 0) = (a, 0) \in I \times \{0\}$ or $(b, 1)(1, 0) = (b, 0) \in I \times \{0\}$, and thus either $a \in I$ or $b \in I$. Hence I is a weakly prime ideal of R_1 . If I is a prime ideal of R_1 , then it is easily verified that $I \times \{0\}$ is a 2-absorbing ideal of R, which is a contradiction. (2) \Rightarrow (1). Suppose that I is a weakly prime ideal of R_1 that is not a prime ideal and $J = \{0\}$ is a prime ideal of R_2 . We show that $I \times \{0\}$ is a weakly 2-absorbing ideal of R. Suppose that $(a,b)(c,d)(e,f) = (ace,bdf) \in I \times \{0\} \setminus \{(0,0)\}$. Since I is a weakly prime of R_1 , we may assume $a \in I$. Since R_2 is an integral domain, we may assume d = 0. Hence $(a, b)(c, d) = (a, b)(c, 0) = (ac, 0) \in I \times \{0\}$. Thus $I \times \{0\}$ is a weakly 2-absorbing ideal of R. We show that $I \times \{0\}$ is not a 2-absorbing ideal of R. Since I is a weakly prime ideal of R_1 that is not a prime ideal, there are $a, b \in R_1$ such that ab = 0 but neither $a \in I$ nor $b \in I$. Since (a,1)(b,1)(1,0) = (0,0)and neither $(a,1)(b,1) = (ab,1) \in I \times \{0\}$ nor $(a,1)(1,0) = (a,0) \in I \times \{0\}$ nor $(b,1)(1,0)=(b,0)\in I\times\{0\}$, we conclude that $I\times\{0\}$ is not a 2-absorbing ideal of R.

Let R_1, R_2 and R_3 be commutative rings with identity and set $R = R_1 \times R_2 \times R_3$. An ideal I of R will have the form $I_1 \times I_2 \times I_3$ where I_1, I_2 and I_3 are ideals of R_1, R_2 and R_3 , respectively. The next two theorems show that weakly 2-absorbing ideals are really of interest in rings of this form.

Theorem 2.14. Let $R = R_1 \times R_2 \times R_3$ where R_1, R_2 and R_3 are commutative rings with identity. If I is a weakly 2-absorbing ideal of R, then either $I = \{(0,0,0)\}$, or I is a 2-absorbing ideal of R.

PROOF. Since $\{0\}$ is a weakly 2-absorbing ideal in any ring, we may assume that $I=I_1\times I_2\times I_3\neq \{(0,0,0)\}$. Since $I\neq \{(0,0,0)\}$, there is an element $(0,0,0)\neq (a,b,c)\in I$. Then (a,1,1)(1,b,1)(1,1,c)=(a,b,c), and hence either $(a,b,1)\in I$ or $(a,1,c)\in I$ or $(1,b,c)\in I$. If $(a,b,1)\in I$, then $I_3=R_3$. Likewise if $(a,1,c)\in I$ or $(1,b,c)\in I$, then $I_2=R_2$ or $I_1=R_1$, respectively. So $I=I_1\times I_2\times R_3$ or $I=I_1\times R_2\times I_3$ or $I=R_1\times I_2\times I_3$. Hence $I\not\subseteq Nil(R)$. Since I is a weakly 2-absorbing ideal of R and $I\not\subseteq Nil(R)$, I is a 2-absorbing ideal of R by Corollary 2.5.

Theorem 2.15. Let $R = R_1 \times R_2 \times R_3$ where R_1, R_2 and R_3 are commutative rings with identity. Let I_1 be a proper ideal of R_1 , I_2 be an ideal of R_2 , and I_3 be an ideal of R_3 such that $L = I_1 \times I_2 \times I_3 \neq \{(0,0,0)\}$. The following statements are equivalent:

- (1) $L = I_1 \times I_2 \times I_3$ is a weakly 2-absorbing ideal of R.
- (2) $L = I_1 \times I_2 \times I_3$ is a 2-absorbing ideal of R.
- (3) $L = I_1 \times R_2 \times R_3$ and I_1 is a 2-absorbing ideal of R_1 or $L = I_1 \times I_2 \times R_3$ such that I_1 is a prime ideal of R_1 and I_2 is a prime ideal of R_2 or $L = I_1 \times R_2 \times I_3$ such that I_1 is a prime ideal of R_1 and I_3 is a prime ideal of R_3 .

PROOF. (1) \Rightarrow (2). Since L is a nonzero weakly 2-absorbing ideal, L is a 2absorbing ideal of R by Theorem 2.14. (2) \Rightarrow (3). Since L is a 2-absorbing ideal of R, I_1 is a 2-absorbing ideal of R_1 . Since I_1 is a proper ideal of R_1 , by the proof of Theorem 2.14 either $I_2 = R_2$ or $I_3 = R_3$. Assume that $I_2 \neq R_2$ and $I_3 = R_3$. We show that I_1 is a prime ideal of R_1 and I_2 is a prime of R_2 . Let $a, b \in R_1$ such that $ab \in I_1$, and let $c, d \in R_2$ such that $cd \in I_2$. Then (a, 1, 1)(1, cd, 1)(b, 1, 1) = $(ab, cd, 1) \in L \setminus \{(0, 0, 0)\}.$ Since $(a, 1, 1)(b, 1, 1) \notin L$, we have (a, 1, 1)(1, cd, 1) = $(a, cd, 1) \in L$ or $(1, cd, 1)(b, 1, 1) = (b, cd, 1) \in L$, and hence $a \in I_1$ or $b \in I_2$ I_1 . Thus I_1 is a prime ideal of R_1 . Similarly, since (ab, 1, 1)(1, c, 1)(1, d, 1) = $(ab, cd, 1) \in L \setminus \{(0, 0, 0)\}$ and $(1, c, 1)(1, d, 1) = (1, cd, 1) \notin L$, we conclude that either $(ab, 1, 1)(1, c, 1) = (ab, c, 1) \in L$ or $(ab, 1, 1)(1, d, 1) = (ab, d, 1) \in L$, and hence either $c \in I_2$ or $d \in I_2$. Thus I_2 is a prime ideal of R_2 . Finally, assume $I_2 = R_2$ and $I_3 \neq R_3$. By an argument similar to that we applied on the ideal $I_1 \times I_2 \times R_3$, we conclude that I_1 is a prime ideal of R_1 and I_3 is a prime ideal of R_3 . (3) \Rightarrow (1). If L is one of the given three forms, then it is easily verified that L is a 2-absorbing ideal of R, and hence L is a weakly 2-absorbing ideal of R.

Theorem 2.16. Let A be a weakly 2-absorbing ideal of a commutative ring R. Then:

- (1) If I is an ideal of R with $I \subseteq A$, then A/I is a weakly 2-absorbing ideal of R/I.
- (2) If R_0 is a subring of R, then $A \cap R_0$ is a weakly 2-absorbing ideal of R_0 .
- (3) If S is a multiplicatively closed subset of R with $A \cap S = \emptyset$, then A_S is a weakly 2-absorbing ideal of R_S .

PROOF. (1). Let $\bar{R} = R/I$, $\bar{A} = A/I$, and pick $\bar{a}, \bar{b}, \bar{c} \in \bar{R}$ such that $0 \neq \bar{a}\bar{b}\bar{c} \in \bar{A}$. Since $\bar{a}\bar{b}\bar{c} \neq 0$, we have $abc \in R - I$. Hence $0 \neq abc \in A$. Since A is weakly 2-absorbing, we have $ab \in A$ or $ac \in A$ or $bc \in A$. Consequently, $\bar{a}\bar{b} \in \bar{A}$ or $\bar{a}\bar{c} \in \bar{A}$ or $\bar{b}\bar{c} \in \bar{A}$. (2). The proof is straightforward. (3). Suppose that $0 \neq (x/r)(y/s)(z/t) \in A_S$ where $x, y, z \in R$ and $r, s, t \in S$ but $(x/r)(y/s) \notin A_S$ and $(x/r)(z/s) \notin A_S$. Then (xyz)/(rst) = a/u for some $a \in A$ and $u \in S$. So there exists $v \in S$ with $vuxyz = vrsta \in A$. Thus we have $0 \neq (vux)yz \in A$ but $(vux)y \notin A$ and $(vux)z \notin A$. Since A is weakly 2-absorbing, it follows that $yz \in A$, that is $(y/s)(z/t) \in A_S$.

3. Rings with the property that all proper ideals are weakly $2\text{-}\mathrm{absorbing}$

For a commutative ring R, let J(R) denotes the intersection of all maximal ideals of R.

Lemma 3.1. Let R be a commutative ring and $a,b,c \in J(R)$. Then the ideal abcR is a weakly 2-absorbing ideal of R if and only if abc = 0.

PROOF. Let $a,b,c \in J(R)$. If abc = 0, then abcR is a weakly 2-absorbing ideal of R. Now suppose that $abc \neq 0$ and abcR is a weakly 2-absorbing ideal of R. Since abcR is a weakly 2-absorbing ideal of R and $0 \neq abc \in abcR$, we conclude that either $ab \in abcR$ or $ac \in abcR$ or $bc \in abcR$. Without lost of generality, we may assume that $ab \in abcR$. Thus ab = abck for some $k \in R$, and hence ab(1-ck) = 0. Since $ck \in J(R)$, 1-ck is a unit of R. Thus ab(1-ck) = 0 implies that ab = 0, and thus abc = 0 which is a contradiction. Hence abc = 0.

Theorem 3.2. Let (R, M) be a quasi-local ring. Then every proper ideal of R is weakly 2-absorbing if and only if $M^3 = \{0\}$.

PROOF. Assume that every proper ideal of R is weakly 2-absorbing. Let $a,b,c \in M$. Since abcR is a weakly 2-absorbing ideal of R, abc = 0 by Lemma 3.1. Thus $M^3 = \{0\}$. Conversely, assume that $M^3 = \{0\}$, and let I be a proper ideal of R such that $I \neq \{0\}$. Suppose that $abc \in I$ and $abc \neq 0$. Since $M^3 = \{0\}$ and $abc \neq 0$, a is a unit of R or b is a unit of R or c is a unit of R, and thus either $ab \in I$ or $ac \in I$ or $bc \in I$. Hence C is a weakly 2-absorbing ideal of C.

Corollary 3.3. Let (R, M) be a quasi-local ideal of R such that $M^2 = \{0\}$. Then every proper ideal of R is a 2-absorbing ideal of R.

PROOF. Let I be a proper ideal of R and suppose that $abc \in I$ for some $a,b,c \in R$. Since $M^3 = \{0\}$, I is a weakly 2-absorbing ideal of R by Theorem 3.2. Hence if $abc \in I \setminus \{0\}$, then there is nothing to prove. Thus assume that abc = 0. Since $M^2 = \{0\}$ and abc = 0, either $ab = 0 \in I$ or $ac \in I$ or $bc = 0 \in I$. Thus I is a 2-absorbing ideal of R.

Theorem 3.4. Let (R_1, M_1) and (R_2, M_2) be quasi-local commutative rings with maximal ideals M_1 and M_2 respectively, and let $R = R_1 \times R_2$. Then every proper ideal of R is a weakly 2-absorbing ideal of R if and only if $M_1^2 = M_2^2 = \{0\}$ and either R_1 or R_2 is a field.

PROOF. Suppose that every proper ideal of R is a weakly 2-absorbing ideal of R. Let $a, b \in M_1$ and suppose that $ab \neq 0$. Then $I = abR_1 \times \{0\}$ is a weakly 2absorbing ideal of R. Since $(a,1)(b,1)(1,0)=(ab,0)\in I\setminus\{(0,0)\}$ and $(a,1)(b,1)\notin$ I, either $(a, 1)(1, 0) = (a, 0) \in I$ or $(b, 1)(1, 0) = (b, 0) \in I$. Assume that $(a, 0) \in I$. Then a = abk for some $k \in R_1$. Hence a(1 - bk) = 0. Since 1 - bk is a unit of R_1 , a=0 which is a contradiction. Also, if $(b,0) \in I$, then one can conclude that b=0 which is a contradiction again. Thus $M_1^2=\{0\}$. Now assume $a,b\in M_2$ such that $ab \neq 0$. Then $I = \{0\} \times abR_2$ is a weakly 2-absorbing ideal of R. Since $(1,a)(1,b)(0,1) = (0,ab) \in I$, by an argument similar to that we applied on M_1 we conclude that either a = 0 or b = 0 which is a contradiction. Thus $M_2^2 = \{0\}$. Suppose that R_1 is not a field. We show that R_2 is a field. Since R_1 is not a field, $M_1 \neq \{0\}$ and $J = M_1 \times \{0\}$ is a weakly 2-absorbing ideal of R. Suppose that R_2 is not a field. Since $M_2^2 = \{0\}$ and R_2 is not a field, there is a $c \in M_2$ such that $c \neq 0$ and $c^2 = 0$. Let $m \in M_1$ such that $m \neq 0$. Then $(m,1)(1,c)(1,c) = (m,c^2) = (m,0) \in J = M_1 \times \{0\} \setminus \{(0,0)\}$, but neither $(m,1)(1,c)=(m,c)\in J$ nor $(1,c)(1,c)=(1,c)\in J$, which is a contradiction. Hence $M_2 = \{0\}$, and thus R_2 is a field. Conversely, suppose that $M_1^2 = \{0\}$ and R_2 is a field. Since $M_1^2 = \{0\}$, every proper ideal of R_1 is a 2-absorbing ideal of R_1 by Corollary 3.3. Since $M_1^2 = \{0\}$ and R_2 is a field, the ideal $\{0\} \times R_2$ is a weakly 2-absorbing ideal of R. Since R_2 is a field, the ideal $R_1 \times \{0\}$ is a weakly 2-absorbing ideal of R. Let J be a proper ideal of R_1 such that $J \neq \{0\}$. Since J is a 2-absorbing ideal of R_1 , $J \times R_2$ is a weakly 2-absorbing ideal of R by Theorem 2.10. Finally, we show that $I = J \times \{0\}$ is a weakly 2-absorbing ideal of R. Suppose that $(a_1, b_1)(a_2, b_2)(a_3, b_3) \in R \setminus \{(0, 0)\}$ for some $a_1, a_2, a_3 \in R_1$ and for some $b1, b_2, b_3 \in R_2$. Since $M_1^2 = \{0\}$, only one of the a_i 's is in M_1 , say $a_1 \in M_1$ and a_2, a_3 are units of R_1 . Since $a_1 a_2 a_3 \in J$ and a_2, a_3 are units of R_1 ,

 $a_1 \in J$. Since R_2 is a field and $b_1b_2b_3 = 0$, at least one of the b_i 's is equal to 0, say $b_2 = 0$. Hence $(a_1, b_1)(a_2, 0) = (a_1a_2, 0) \in I$. Thus I is a weakly 2-absorbing ideal of R.

Theorem 3.5. Let R_1 , R_2 , and R_3 be commutative rings, and let $R = R_1 \times R_2 \times R_3$. Then every proper ideal of R is a weakly 2-absorbing ideal of R if and only if R_1 , R_2 , R_3 are fields.

PROOF. If R_1 , R_2 , and R_3 are fields, then by [4, Theorem 3.4(3)] every nonzero proper ideal of R is a 2-absorbing ideal of R, and hence every proper ideal of R is a weakly 2-absorbing ideal of R. Conversely, suppose that every proper ideal of R is a weakly 2-absorbing ideal of R and one of the $R_i's$, $1 \le i \le 3$, is not a field. Without lost of generality, we may assume R_1 is not a field. Hence R_1 has a proper ideal J such that $J \ne \{0\}$. Let $I = J \times \{0\} \times \{0\}$. Then I is a weakly 2-absorbing ideal of R. Let $m \in J$ such that $m \ne 0$. Then $(m, 1, 1)(1, 0, 1)(1, 1, 0) = (m, 0, 0) \in I \setminus \{(0, 0, 0)\}$ but neither $(m, 1, 1)(1, 0, 1) = (m, 0, 1) \in I$ nor $(m, 1, 1)(1, 1, 0) = (m, 1, 0) \in I$ nor $(1, 0, 1)(1, 1, 0) = (1, 0, 0) \in I$, which is a contradiction. Thus R_1 , R_2 , and R_3 are fields.

Lemma 3.6. Suppose that every proper ideal of R is a weakly 2-absorbing ideal. Then R has at most three maximal ideals.

PROOF. Suppose that M_1, M_2, M_3, M_4 are distinct maximal ideals of R. Let $I = M_1 \cap M_2 \cap M_3$. Since there are three prime ideals of R that are minimal over I, I is not a 2-absorbing ideal of R by [3, Theorem 2.5]. Hence I is a weakly 2-absorbing ideal of R that is not a 2-absorbing ideal of R. Thus $I^3 = \{0\}$ by Theorem 2.4. Hence $I^3 = M_1^3 M_2^3 M_3^3 = \{0\} \subset M_4$, and thus one of the M_i 's, $1 \le i \le 3$, is contained in M_4 , which is a contradiction. Hence R has at most three distinct maximal ideals.

Theorem 3.7. A commutative ring R has the property that every proper ideal is a weakly 2-absorbing ideal of R if and only if one of the following statements hold:

- (1) (R, M) is a quasi-local ring with $M^3 = 0$.
- (2) R is ring-isomorphic to $R_1 \times F$, where R_1 is a quasi-local ring with maximal ideal M such that $M^2 = \{0\}$ and F is a field.
- (3) R is ring-isomorphic to $F_1 \times F_2 \times F_3$, where F_1, F_2, F_3 are fields.

PROOF. If R satisfies condition (1), then every proper ideal of R is a weakly 2-absorbing ideal of R by Theorem 3.2. If R satisfies condition (2), then every proper ideal of R is a weakly 2-absorbing ideal of R by Theorem 3.4. If R satisfies

condition (3), then every proper ideal of R is a weakly 2-absorbing ideal of R by Theorem 3.5. Conversely, suppose that every proper ideal of R is a weakly 2absorbing ideal. Then R has at most three maximal ideals by Lemma 3.6. Hence we consider the following three cases: Case 1. Suppose that R has exactly one maximal ideal, call it M. Then $M^3 = \{0\}$ by Theorem 3.2. Case 2. Suppose that R has exactly two maximal ideals, say M_1 and M_2 are the maximal ideals of R. Then $J(R) = M_1 \cap M_2$ is a weakly 2-absorbing ideal of R (in fact, J(R)is a 2-absorbing ideal of R). We show $J(R)^3 = \{0\}$. Let $a, b, c \in J(R)$. Since abcR is a weakly 2-absorbing ideal of R, we conclude that abc = 0 by Lemma 3.1. Thus $J(R)^3 = M_1^3 \cap M_2^3 = \{0\}$. Hence R is ring-isomorphic to $R/M_1^3 \times R/M_2^3$. Since R/M_1^3 and R/M_2^3 are quasi-local commutative rings, we conclude that R is ring-isomorphic to $R_1 \times F$, where R_1 is quasi-local ring with maximal ideal M such that $M^2 = \{0\}$ and F is a field by Theorem 3.4. Case 3. Suppose that R has exactly three maximal ideals, say M_1, M_2, M_3 are the maximal ideals of R. Hence $J(R) = M_1 \cap M_2 \cap M_3$ is a weakly 2-absorbing ideal of R. Since J(R) is the intersection of three prime ideals of R, J(R) is not a 2-absorbing ideal of R by [4]. Hence $J(R)^3 = \{0\}$ by Theorem 2.4. Since $J(R)^3 = M_1^3 \cap M_2^3 \cap M_3^3 = \{0\}$, we conclude that R is ring-isomorphic to $R/M_1^3 \times R/M_2^3 \times R/M_3^3$. Thus R is ring-isomorphic to $F_1 \times F_2 \times F_3$, where F_1, F_2, F_3 are fields by Theorem 3.5. \square

Corollary 3.8. Let n be a positive integer. Then every proper ideal of $R = \mathbb{Z}_n$ is a weakly 2-absorbing ideal of R if and only if either $n = q^3$ for some prime positive integer q or $n = q^2p$ for some distinct prime positive integers q, p or $n = q_1q_2q_3$ for some distinct prime positive integers q_1, q_2, q_3 .

Let I be a 2-absorbing ideal of a commutative ring R and suppose that $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R. Then by [4] either $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$. We are unable to answer the following question:

Question. Suppose that I is a weakly 2-absorbing ideal of a commutative ring R that is not a 2-absorbing ideal and $0 \neq I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2 , and I_3 of R. Does it imply that $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$?

References

- D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), 686-696.
- [2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (4) (2003), 831-840.
- [3] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, accepted, to appear in Comm. Algebra.

- [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417–429.
- $[5] \ \ J. \ Huckaba, \ Commutative \ rings \ with \ Zero-Divisors, \ Marcel Dekker, \ New \ York/Basil, \ 1988.$ Received April 6, 2010

AMERICAN UNIV OF SHARJAH, DEPT OF MATH, BOX 26666, SHARJAH, UAE $E\text{-}mail\ address:}$ abadawi@aus.edu

 $\label{thm:local_problem} University \ of \ Mohaghegh \ Ardabili, \ Dept \ of \ Math, \ P. \ O. \ Box \ 179, \ Ardabili, \ Iran \\ \textit{E-mail address: } \ yousefian@uma.ac.ir, \ youseffian@gmail.com$